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Pressure drop in CIM disk monolithic columns
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Abstract

Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared
to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying
hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results.
Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same
hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon
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eems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and p
onuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was es
e between 1.03 and 2.75.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Chromatographic separations represent an important end-
f-pipe process in the production of pharmaceutical and other

ife science goods due to the rather low reaction conversions
nd required high product purity. Because of that, purification

s usually slow and very cost intensive. Considerable saving in
apital investment as well as operational costs can be made by
ntroducing new stationary phases and by understanding the
undamental phenomena taking place during these processes.

Classical particulate stationary phases for chromato-
raphic separations are prepared by packing micrometer
ized porous particles into a column. Separation of products
akes place in the pores of particles and therefore the rate
f separation is diffusion limited, meaning that the rate can
e increased only on the expense of lower separation qual-

ty. In addition, the relatively low porosity of such columns
ives rise to large pressure drops. Thus, monolithic station-

∗ Corresponding author. Tel.: +386 1 426 56 49; fax: +386 1 426 56 50.
E-mail address:ales.podgornik@monoliths.com (A. Podgornik).

ary phases are becoming more and more important i
field of liquid chromatography because they enable extre
fast separations without changing the resolution and bin
capacity[1,2]. Monoliths consist of single piece of high
porous organic or inorganic material with pores made u
highly interconnected channel network resulting in high
fective porosity and thus enabling efficient flow of the mo
phase. As a result, fast mass transfer between the stat
and mobile phase is possible and, in addition, the pre
drop is considerably lower than with classic particulate
tionary phases.

Several results have been published in the literature
ing with the pressure drop in monolithic columns. The m
difficulty is how to properly describe their structural prop
ties to be able to compare them with the particulate supp
The prerequisite for such a comparison is an introductio
a universal characteristic dimension for the description o
monolith structure. Several approaches have been pro
in the literature.

Meyers and Liapis used a pore-network modeling
proach wherein a number of so-called flow nodes are i
021-9673/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2004.10.054
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connected by cylindrically shaped pores with variable diam-
eter[3–5]. To predict the pressure drop, detailed knowledge
of the structural properties is required, such as pore size dis-
tribution and pore connectivity. The latter, however, is very
difficult to determine, therefore the lack of accurate experi-
mental data limits wider application of the model.

Tallarek and coworkers introduced equivalent particle di-
mension for silica monoliths[6,7]. This dimension is ob-
tained by dimensionless scaling of macroscopic fluid behav-
ior, i.e. hydrodynamic permeability and hydrodynamic dis-
persion in both types of material; particulate and monolithic.
As a result there is no need for direct geometrical translation
of their constituent unit. This elegant approach can be basi-
cally applied to any type of stationary phase. However, since
there is no clear correlation to the monolith structural proper-
ties it is difficult to perform an optimization of the monolithic
structure on its basis.

An even more detailed elaboration of the pressure drop
prediction on silica monoliths was performed by Vervoort
et al.[8,9]. Their calculations were based on computational
fluid dynamics simulations using Navier–Stokes equations.
The assumption of the tetrahedral skeleton structure enabled
to correlate the pressure drop to the skeleton thickness and
column porosity. Using this approach it is possible, on a the-
oretical basis, to predict optimal structure for the monolith
a tool.
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hydraulic radius of the porous medium as a characteristic di-
mension of the hypothetical channels to which the porous
medium is assumed to be equivalent. The hydraulic radius is
defined as[12]:

rh = cross section available for flow

wetted perimeter

= volume available for flow

total wetted surface
= ε

a
(1)

Since the channels need not be regular, the measure of the
hydraulic radius in terms of the ratio of volume to the surface
of the pore space, rather than the diameter of a hypothetical
pore, can be used. As the flow rates through chromatographic
columns are very low (in order to insure sufficient time for
product separation and also to avoid excessive pressure drop)
one can employ the Hagen–Poiseulle equation for laminar
flow through pipes by introducing four times the hydraulic
radius instead of the diameter of the pipe[13], thus

�P = k1
2ηuL

r2
h

(2)

wherek1 represents the correction factor for the hydraulic
radius assumption, which for laminar flow gives too low a pre-
diction of pressure drop for a given fluid flow rate. In addition,
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nd can therefore be used as a powerful optimization
owever, so far this approach was only applied to the t
edral skeleton structure and its application on other typ
onoliths having different structure might not be trivial. T

s probably the reason why no attempts to describe meth
ate monoliths in a similar manner have been published

Because the structure of methacrylate monoliths mor
embles the particle beds attempts have been made to c
erize them with the well-known Kozeny–Carman equa
nd calculation of the equivalent particle diameter from
ressure drop data have been made[10]. It was noticed tha

he calculated equivalent particle diameter significantly
eeded the size of the particles determined from SEM
ures. However, in more recent work published by the s
roup the discrepancy was found to be much smaller[11].

The aim of this work is an introduction of a different a
roach, based on the hydraulic radius calculation that c
e applied on various types of chromatographic porous m
nabling their comparison.

. Experimental

.1. Modeling

The most common approach for pressure drop mod
n packed beds is through the use of the so calledcapillary

odelwhere porous material is regarded as a bundle of
led tubes of weird cross section. The theory can the
eveloped by applying the results of flow through a si
traight tube to the collection of crooked tubes by usin
-

he correction factor also takes into account the non-idea
f the porous media as the tortuousity of pores, their con

ivity and difference in their shape and sizes. In essence
orrection factor,k1, should be determined experimenta
or every porous media separately[13]. Eq. (2) is sufficient
o describe the pressure drop in the monolith, howeve
rder to compare the results with an adequate packed b
xpression can be developed further. By introducing the
raulic radius for a packed bed made up of particles of e
ize and shape

h = εVp

(1 − ε)Sp
= dpε

6(1− ε)
(3)

and the superficial, rather than interstitial, velo
v= u/ε) we obtain the well-known Kozeny–Carman relati
hip for creeping flow in packed beds

P = 72k1
ηvL

d2
p

(1 − ε)2

ε3
(4)

The factork1 is usually assumed constant (2.08 when
C constant is 150 and 2.5 when the KC constant is

or the narrow range of porosities typically encountere
acked beds (ε = 0.35–0.50).

However, in order to compare the packed bed with a m
ith at porosities typical for a monolith (ε > 0.6) a more de
ailed evaluation ofk1 is needed. This can be done by emp
ng thefree surface model(also referred to as thedrag model)
f Happel[14], which has been shown to be applicable
ide range of porosities, also those well above 0.6, wher
apillary model fails as the predicted pressure drop value
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too low. Two concentric spheres serve as a cell model for a
random assemblage of spheres in a fluid flow field. Each cell
contains a particle surrounded by a fluid envelope (the outside
surface of which is assumed to be frictionless) and contains
the same amount of fluid as the relative volume of fluid to
particle volume in the entire assemblage. By employing the
Navier–Stokes equations to describe the creeping fluid mo-
tion, Happel obtained the following expression:

�P = 18
ηvL

d2
p

(1 − ε)

×
(

3 + 2(1− ε)5/3

3−9/2(1− ε)1/3 + 9/2(1− ε)5/3 − 3(1− ε)2

)

(5)

It is possible to express Eq.(5) in the form of Eq.(4)when
the correction factork1 is defined as

k1 = 4ε3

(1 − ε)

×
(

3 + 2(1− ε)5/3

3 − 9/2(1− ε)1/3 + 9/2(1− ε)5/3 − 3(1− ε)2

)

(6)

o ac-
t
A )
f ked
b ctor

Table 1
The correction factork1 calculated from Eq.(6)according to the free surface
model of Happel[14] for assemblage of uniformly sized spherical particles
for different porosities

ε k1

0.3 2.22
0.4 2.27
0.5 2.37
0.6 2.55
0.7 2.90
0.8 3.61
0.9 5.67
0.99 35.8

starts increasing rapidly as the porosity of the medium in-
creases above 0.6 and becomes undetermined as the porosity
approaches 1. By using Eq.(6) for the correction factor cal-
culation it is possible to predict a pressure drop in packed
bed of uniformly sized spheres in large range of porosity.
However, for other types of porous media, like monoliths,
the correction factor has to be determined separately and can
then be used as a comparison criterion between the two types
of supports.

2.2. Measurements

Commercial CIM DEAE disk monolithic columns from
BIA Separations (Ljubljana, Slovenia) were employed as test
material for measuring pressure drop. SEM picture of this ma-
terial is presented inFig. 1. These 3-mm thick and 12-mm
diameter discs are usually employed for analytical purposes.
Nevertheless, they are produced in the same manner as in-

the st
The correction factork1, as defined in Eq.(6), is a function
f porosity only. The influence of porosity on correction f

or (k1) for a wide range of porosity is presented inTable 1.
s can be seen,k1 is more or less constant (to within 5%

or the range of porosities typically encountered in pac
eds. On the other hand, the value of the correction fa

Fig. 1. SEM picture representing
 ructure of the GMA-EDMA monolith.



62 I. Mihelič et al. / J. Chromatogr. A 1065 (2005) 59–67

dustrial separation columns and thus have similar structural
properties. The porosity and density of monolithic material
were determined to be 0.64 and 0.48 mg/mL, respectively,
using mercury porosimetry Pascal 440 (ThermoQuest Italia,
Rodano, Italy). The specific surface area, determined by the
BET method using Tristar 3000 (Micromeretics, Gosford,
Australia) was found to be 7.19 m2/g.

Pressure drop measurements were conducted by placing
disks into stainless steel housing of the same dimensions
as the commercially available ones. The experimental setup
consisted of a Knauer 64 HPLC pump (Knauer, Berlin, Ger-
many), digital pressure gauge Digibar from HBM (Darm-
stadt, Germany), the column and a digital GJC Instruments
5025000 flow meter (Merseyside, UK). These elements were
connected with Peek standard tubing. The fluid employed in
the experiments was bidestilated water at 20◦C. The pres-
sure was measured directly at the column inlet, so no tubing
was placed between the measurement point and the housing
inlet. The column outlet was open to the atmospheric pres-
sure; therefore the pressure drop on the column is equal to
the measured value on the gauge.

3. Results and discussion
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Fig. 3. The comparison between the experimentally measured data and
Darcy’s law. The permeability of the monolithic media is 1.11× 10−14 m2.

function of the number of inserted disks and it can be sub-
tracted as an end effect. Using this procedure, the dependence
of the pressure drop on the length of monolithic layer can be
calculated. It can be seen fromFig. 2 that the pressure drop
is a linear function of flow rate, indicating a laminar flow
regime. A linear relation between the pressure drop and the
flow rate also proves that the porous monolithic structure is
stable and does not contract at higher flow rates.

From the pressure drop data the permeability of the
monolithic media can also be calculated. Accordingly to the
Darcy’s law, the dependence of pressure drop versusvLη

should be a linear function with the slope of inverse number
of permeability. Such plot is presented inFig. 3.

As expected, a straight line is found with the permeabil-
ity of 1.11× 10−14 m2 indicating that the Darcy law holds.
Therefore, the assumption of laminar flow through the mono-
lith has been justified experimentally.

Another parameter describing the characteristics of the
porous monolithic material is the equivalent diameter. The
equivalent diameter is defined as the diameter of the cylin-
drical channel in which the pressure drop would be equal to
the pressure drop in the porous medium at the same interstitial
velocity. It can be calculated according the Eq.(7):

DE = 2

√
32ηLΦv (7)

s ithic
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i drop
To estimatek1 value for the methacrylate monoliths t
ressure drop was measured. Data are shown inFig. 2. The
ressure drop is presented as a function of the flow rat

he length of monolithic layer. The column length was
ed simply by adding 3 mm thick monolithic disks into t
tainless steel housing. Monolithic disks cannot be used
ut the housing; therefore all presented results inFig. 2also

nclude the pressure drop contribution of the housing. In
ousing the distributor and collector represent the major

ribution to pressure drop; however this contribution is
ne order of magnitude lower than the pressure drop
ingle monolithic column. Since the same housing was
or all experiments the pressure drop on the housing is

ig. 2. The dependence of the measured pressure drop on the flow r
he number of inserted monolithic disks, e.g. length of the monolithic l
�PSε

By using the measured data and applying Eq.(7) it is pos-
ible to calculate the equivalent diameter of the monol
edium. Results of such a calculation are graphically

ented inFig. 4as the dependence of equivalent diamete
he flow rate and the length of monolith.

It can be seen fromFig. 4 that the value of the equivale
iameter increases with the flow rate regardless of the m

ithic layer length. There can be different reasons for su
ehavior. The deviation is the most apparent at low flow r
hich indicates the possibility of nonuniform distribution

he liquid over the column cross section. This reflects in
ncreased interstitial velocity that causes higher pressure
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Fig. 4. The dependence of the calculated equivalent diameter on the flow
rate and the length of the monolith. Symbols (�) and (©) represent the two
runs.

and accordingly to the Eq.(7) leads to lower equivalent di-
ameter. At higher flow rates this effect slowly fades away and
the equivalent diameter becomes more or less independent of
the linear velocity. However, one would expect that this ef-
fect would diminish with the increase of the column length,
since contribution of maldistribution would become smaller.
Consequently, in the case of seven disks there should be sig-
nificantly smaller differences by changing the flow rate as the
measured 5% obtained for all measurements. An alternative
explanation might be that some of the small pores, where the
liquid is stagnant at low flow rates, become open at higher
flow rates meaning appearance of a convective flow. There-
fore, although being small, they do contribute to the overall
value of the equivalent diameter. Similar hypothesis was put
forth to explain longer retention volumes of oligonucleotides
separated in isocratic mode on equal type of monolithic col-
umn[15].

Regardless of the true nature of the observed phenomenon
it can be concluded that the value of the equivalent diameter
for the monolithic medium is 0.75�m ±5%. The compari-
son between this value and the pore size distribution in CIM
monoliths shows that the equivalent diameter is smaller than
the diameter of macro pores having a median average diam-
eter around 1.5�m [16,17]. This means that the liquid must
flow not only through macro pores but also through pores of
s

no-
l fec-
t a of
a ow-
e ithin
t ere-
f vol-
u d
p pen
a

ditional proof for the absence of closed pores in the mono-
lithic structure is a very fast mass transfer in these media
[11,18], because eventual presence of closed pores, where
the liquid is stagnant, would results in much slower diffusion
limited mass transfer. Consequently, it can be assumed that
the entire measured specific area by BET method (7.19 m2/g)
corresponds to the area exposed to liquid flow. The specific
surface area of the monolith can be also estimated from the
scanning electron microscopy (SEM) pictures, presented in
Fig. 1. It can be seen that the monolith consists of nonporous
spherical particles with the diameter of approximately 0.6�m
that are glued together into clusters. Since these basic spher-
ical constituents are not porous, the specific surface area
can be calculated as in the case of loosely packed bed of
spheres.

a = A

m
= A

ρV
= 6(1− ε)

ρdp

= 6(1− 0.64)× 10−6 m3

0.48 g 0.6 × 10−6 m
= 7.5 m2/g (8)

The difference between measured specific surface area
by BET and calculated specific surface area is small, which
proves that the spherical constituents are certainly nonporous.
It can be concluded from this observation that the entire sur-
f flow.
T ea by
B e
h
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ing.
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l
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T

m t the
maller diameter, present in the structure.
For the determination of the hydraulic radius of the mo

ithic material a specific area available for flow and the ef
ive porosity of the media must be known. Specific are
typical chromatographic media is usually very high; h

ver, the majority of the specific surface area is located w
he closed pores that are not exposed to liquid flow. Th
ore, the contribution of the closed pores area and void
me cannot be considered in Eq.(1). In methacrylate-base
orous monolithic structure all pores are presumably o
nd available for flow, which can be seen fromFig. 1. Ad-
,

ace area of the monolith can be exposed to the liquid
herefore the measured value of the specific surface ar
ET can be applied in the Eq.(1) for the calculation of th
ydraulic radius

h = ε

ρa
= 0.64× 10−6 m3 g

0.48 g× 7.19 m2
= 0.186�m (9)

Using the known value of the hydraulic radius it is po
le to fit measured pressure drop results (presented inFig. 2)
ith Eq. (2) in order to determine the correction factor (k1).

n Fig. 5, the comparison between experimentally meas
ressure drop and the prediction wherek1 = 0.972 is pre
ented.

Such a low value of correction factor is very surpris
his means that the pressure drop in monolith is more
0% lower than it would be in conventional packed b
aving the same porosity, hydraulic radius and length.

icle diameter having the same hydraulic radius as m
ithic structure can be calculated from Eq.(3). Taking into
ccount the same porosity (0.64) an adequate particle
ter is 0.63�m. A packed bed of spheres with 0.63�m in
iameter, and bed porosity of 0.64 would have the same

ace area as monolith. However, its pressure drop wou
.75 times higher than in a monolith. This ratio can be ea
etermined from the comparison of correction factors.
orrection factor for such a packed bed can be determ
rom Eq. (6) or by a quick interpolation of values given
able 1at 0.64 porosity, wherek1 = 2.67.

Furthermore, the fact that the correction factork1 for the
onolith is lower than 1 is very unusual. This means tha
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Fig. 5. Comparison between experimentally measured data and capillary model (Eq.(2)), wherek1 = 0.972.

pressure drop in a monolith is even lower that it would be
in a bed made of equal and straight cylindrical tubes, having
the same hydraulic radius as the monolithic column. Since
this is not in accordance with standard models, at least one
of the assumptions applied for derivation of Kozeny–Carman
or Happel equations (for more details see Scheidegger[19])
may not be fulfilled in this case. The most obvious candi-
date is the assumption of uniform pores, whereas methacry-
late monoliths are known to have bimodal pore distribution
[16], which hardly fits the above assumption. This, however,
is important since in heterogeneous porous structures with
a parallel type of pore nonuniformity the majority of liq-
uid flows through bigger channels while smaller channels
remain permeable and therefore contribute to overall surface
area[12]. Since bigger and smaller channels are highly in-
terconnected they can be considered as randomly distributed.
For such type of supports it was theoretically predicted that
the throughput at a certain pressure drop increases signif-
icantly with the increase of the self-similarity levels when
the porous structure is partially fractal[20]. This can also be
demonstrated by simple calculation presented in Appendix
[21]. On the basis of that calculation, the pressure drop in
a structure of parallel type pore nonuniformity can be sev-
eral times lower compared to the one with uniform pores,
despite both having the same porosity. That the methacry-
l y and
c ady
s es

of the structure (seeFig. 1) and the formation mechanism.
The monolith skeleton is formed through the precipitation
of nuclei into inert solvent. After precipitation they continue
to grow and start to link together forming larger clusters and
finally a rigid monolithic skeleton as described in details else-
where[23]. Therefore, it is reasonable to assume that such
structure possess certain degree of self-similarity resulting
also in bimodal (or even multimodal) pore size distribution,
as demonstrated by measurements performed with mercury
porosimetry[16]. If we assume that the diameter ratio be-
tween larger and smaller pores is around or even above 10
(1500 nm is a diameter of large pores while the majority of
the small pores has a diameter below 100 nm[16,17]), taking
into account the obtainedk1 value, as well as the conclusions
from Appendix, especially the one from Eq.(A.6), one can es-
timate that the methacrylate monoliths exhibit self-similarity
level slightly above 1 (namely 1/0.972 = 1.03). This conclu-
sion would be valid in case the pores in the monolith would
be straight cylindrical pores, for which thek1 would be 1.
We can see from theFig. 1, however, that this is not the case
and the structure more resembles a particulate bed. For such
a structure, where tortuosity and other effects are taken into
account, an equivalentk1 would be 2.67. This value should
be therefore compensated by a parallel pore structure and in
this case the level of self-similarity would need to be (ac-
c 72
g n the
t

ate based monoliths express certain degree of fractalit
onsequently, certain degree of self-similarity was alre
peculated by Podgornik[22] based on the SEM pictur
ording to Eq.(A.7), Appendix) approximately 2.67/0.9
iving 2.75. The real value should therefore be betwee

wo calculated values.
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According to our best knowledge, this seems to be the first
physical proof that heterogeneous and partially self-similar
(fractal) porous structures are advantageous in terms of lower
pressure drop over homogenous porous structures. Calcula-
tions performed in Appendix also demonstrate that it is ex-
tremely important to determine the type of pore connectivity
in terms of the mobile phase flow to be able to properly predict
and evaluate hydrodynamic properties of such units.

4. Conclusions

Unexpectedly low-pressure drop on monolithic column
when compared with packed bed of spheres can be attributed
to the monolith highly interconnected porous structure, bi-
modal pore size distribution and parallel type pore nonunifor-
mity. Correction factork1 was shown to be for a methacrylate
monolith only 0.972, while the correction factor for packed
beds of spheres is 2.67 for the same porosity. The value below
1 indicates that it is possible to prepare monoliths having a
pressure drop lower than in straight cylindrical pores if the
proper architecture of the pores is present. Since the mono-
lithic structure gives greater flexibility in terms of skeleton
geometry in comparison to beads, we believe that by apply-
ing the proposed approach further optimization of monolithic
p ower
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ε effective porosity (/)
Φv volumetric flow rate (m3/s)
η viscosity (Pas)
ρ density (kg/L)
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Appendix A

Estimation of the pressure drop for different types of
porous media.

In Fig. A.1, three types of pore arrangements are shown.
In the first case (A), the structure is made of uniform pores
all having equal diameterDa. Structures B and C represent
two extreme types of nonuniform pore distribution: B is a
structure of parallel type pore nonuniformity and C is a serial
type of pore nonuniformity. While the structure B is identical
between all the nodes, the structure C is periodically chang-
ing. In reality, a combination of both types occurs and it is
t ure
o ulate
p

ean-
i odes
h res.
F raulic
r hould
b res.

es,
� drop
o s
D af-
t hould
b is
� in
t
H have
l
t

res.
orous structure is possible in order to achieve even l
ressure drops without significantly influencing chrom
raphic properties. The main goal would be to prepare
onoliths with even higher degree of self-similarity of a p
llel type.

omenclature

surface area (m2)
specific surface area (m2/g)

E equivalent diameter (m)
i diameter of pore i (m)

p diameter of a sphere (m)
1 correction factor

length (m)
mass (g)
number of self-similar levels (/)
pore diameter ratio (/)

h hydraulic radius (m)
cross-sectional column area (m2)

p particle surface (m2)
interstitial velocity (m/s)
superficial velocity (m/s)
volume (m3)

p particle volume (m3)

reek symbols
P pressure drop (Pa)
Pi pressure drop on part i (Pa)
herefore difficult to predict the overall effect of the struct
n the pressure drop. However, it is rather simple to calc
ressure drop for both extremes.

Let us assume that porosity is in all cases the same, m
ng that the pore volume must be equal, as well that n
ave no volume, and therefore all the volume is in the po
urthermore, structures B and C have also the same hyd
adius. For the beds of the same length, the pore area s
e equal too. The same flow rate is applied to all structu

It is clear that for structure A, having uniform por
Pa1=�Pa2 holds and consequently, the total pressure
ver the bed is�Pa =�Pa1+�Pa2. For the structure B, pore
b1 and Db2 just switched their positions before and

er the node, the pressure drop for both segments s
e equal too,�Pb1 =�Pb2 and overall pressure drop
Pb =�Pb1 +�Pb2. Structure C is similar to structure B

erms of pore size distribution, sinceDc1 = Db1andDc2 = Db2.
owever, since the pores in segment above the node

arger diameter of that below the node,�Pc1	=�Pc2 while
he total pressure drop is still�Pc =�Pc1 +�Pc2.

Fig. A.1. Different configurations of three hypothetical porous structu
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Liquid flowing through the pores can randomly switch
through the nodes from one pore into another. Since in
the case of methacrylate monoliths pores are highly inter-
connected, liquid should pass many nodes during its travel
through the monolith, therefore the average passage time
obeys Gauss distribution function according to the central
limiting theorem[24].

Estimation of the pressure drop for structures A, B and C is
performed in the following way. If we set thatDb1 = N× Db2
(N> 1), the equality for the pore volume can be written as:

4
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+ 2

πD2
c2

4
= πD2

c1
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(
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)
(A.1)

Flow through the bed should be equal to the sum of the
flows through all the pores. Due to the cylindrical pore shape
and laminar flow, pressure drop can be calculated according to
the Hagen–Poiseulle equation (Eq.(2)) giving the following
expression:

Φv = 4
π�Pa1D
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128ηL
= 2

π�Pb1D
4
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N4128ηL
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Fig. A.2. Dependence of�Pa/�Pb and�Pa/�Pc ratios on value ofN. Solid
line represents structure B having two pore sizes (n= 2), dashed line repre-
sents structure B having three pore sizes (n= 3) and dotted line represents
structure C having two pore sizes (n= 2).

and

�Pa

�Pc
= n3

n−1∑
i=0

N4i

(
n−1∑
i=0

N−2i

)2

= n3 N4 − 1

N4n − 1

(
N−2 − 1

N−2n − 1

)2

(A.8)

with the limits

lim
N→∞

�Pa

�Pc
= 0 and lim

n→∞
�Pa

�Pc
= 0 (A.9)

wheren stands for number of self-similar levels (degree of
self-similarity).

The effect of the structure type on the pressure drop it is
demonstrated inFig. A.2.

From theFig. A.2, it is clear that structure B always gives
lower value for the pressure drop in comparison to the uni-
form pore size distribution, while the structure C always gives
higher pressure drop. In fact, both limits of�Pa/�Pc whenn
andN goes to infinity go to 0 which means that�Pc goes to
infinity. On the other hand, from the Eqs.(A.6) and (A.7)it
i
t f
s -
fi the
p one
c oros-
i ize
t nts
a tually
b

= 2
c1 c1

128ηL
+ 2

c2 c2

128ηL
(A.2)

From the above equation it is easy to calculate the pre
atio�Pa/�Pb

�Pa

�Pb
= 2(1+ 1/N4)

(1 + 1/N2)2
(A.3)

Calculation of the�Pa/�Pc ratio requires additional a
umption that flow through the segment above the no
qual to the flow through the segment below the node an
tructure C this gives

π�Pc1D
4
c1

128ηL
= 2

π�Pc2D
4
c2

128ηL
(A.4)

�Pa/�Pc ratio can then be rewritten as

�Pa

�Pc
= 8

(1 + N4)(1 + 1/N2)2
(A.5)

Eqs.(A.3) and (A.5)are valid for two sizes of pores havi
he ratio of diameterN. In case there are many self-sim
evels, it means levels of pores having the same diameter
he Eqs.(A.3) and (A.5)can be generalized to

�Pa

�Pb
= n

∑n−1
i=0 N−4i(∑n−1

i=0 N−2i
)2

= n
N−2 − 1

N−2 + 1

N−2n + 1

N−2n − 1
(A.6)

ith the limits

lim
→∞

�Pa

�Pb
= n and lim

n→∞
�Pa

�Pb
= ∞ (A.7)
s clear that when the pore ratio approaches infinity (N→∞)
he ratio of the pressure drop�Pa/�Pb equals to levels o
elf-similarityn and consequently, whenn rises towards in
nity the�Pb goes to zero. Theoretically speaking, with
roper pore size distribution and network architecture
an obtain as low pressure drop as desired for a given p
ty. However, in practice there is a lower limit of the pore s
hrough which the liquid flows, therefore further experime
re required to investigate what pressure drops can ac
e achieved.
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[1] A. Štrancar, M. Barut, A. Podgornik, P. Koselj, Dj. Josić, A.
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